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Abstract

We explore recently proposed Bayesian nonparametric
models of image partitions, based on spatially dependent
Pitman-Yor processes. These models are attractive be-
cause they adapt to images of varying complexity, success-
fully modeling uncertainty in the structure and scale of hu-
man segmentations of natural scenes. By developing sub-
stantially improved inference and learning algorithms, we
achieve performance comparable to state-of-the-art meth-
ods. For learning, we show how the Gaussian process (GP)
covariance functions underlying these models can be cal-
ibrated to accurately match the statistics of example hu-
man segmentations. For inference, we develop a stochastic
search-based algorithm which is substantially less suscep-
tible to local optima than conventional variational meth-
ods. Our approach utilizes the expectation propagation al-
gorithm to approximately marginalize latent GPs, and a low
rank covariance representation to improve computational
efficiency. Experiments with two benchmark datasets show
that our learning and inference innovations substantially
improve segmentation accuracy. By hypothesizing multiple
partitions for each image, we also take steps towards cap-
turing the variability of human scene interpretations.

1. Introduction
Image segmentation algorithms partition images into

spatially coherent, approximately homogeneous regions.
Segmentations provide an important mid-level representa-
tion which can be leveraged for various vision tasks includ-
ing object recognition [11], motion estimation [26], and im-
age retrieval [4]. Despite significant research [23, 5, 7, 15,
2], segmentation remains a largely unsolved problem. One
major challenge is to move beyond seeking a single “opti-
mal” image partition, and to recognize that while there are
commonalities among multiple human segmentations of the
same image, there is also substantial variability [12].

Most existing segmentation algorithms are endowed
with a host of tunable parameters; a particular configura-
tion may work well on some images, and poorly on others.
Often these parameters are tuned via manual experimenta-

tion, or expensive validation experiments. Noting this is-
sue, Russell et al. [21] produced a “soup of segments” by
varying the parameters of the normalized cuts algorithm,
and collecting the range of observed outputs. Others have
used agglomerative clustering methods to produce a nested
tree of segmentations [2]. A limitation of these approaches
is that they do not provide any image-specific estimate of
which particular segmentations are most accurate.

In this paper, we instead pursue a Bayesian nonpara-
metric statistical approach to modeling segmentation uncer-
tainty. We reason about prior and posterior distributions on
the space of image partitions, and thus consider segmenta-
tions of all possible resolutions. In contrast with parametric
segmentation models based on finite mixtures [4, 1, 22] or
Markov random fields [8], we do not need to pre-specify the
number of segments. Our inference algorithm automatically
provides calibrated estimates of the relative probabilities of
segmentations with varying numbers of regions.

Because we define a consistent probabilistic model and
not just a segmentation procedure, our approach is a natural
building block for more sophisticated models. We improve
earlier work on spatially dependent Pitman-Yor (PY) pro-
cesses [25], which was motivated by the problem of jointly
segmenting multiple related images. This PY model was
later extended to allow prediction of semantic segment la-
bels, given supervised annotations of objects in training im-
ages [24]. Here we focus on the problem of segmenting
single images containing unknown object categories.

The model we consider is a minor variation on the de-
pendent PY process of Sudderth and Jordan [25], which
captures the power law distribution of human image seg-
ments via a stick-breaking construction, and uses Gaussian
processes (GPs) to induce spatial dependence. Our first ma-
jor contribution is a new posterior inference algorithm that
is far less susceptible to local optima than previous mean
field variational methods [25]. Our algorithm combines a
discrete stochastic search, capable of making large moves in
the space of image partitions, with an accurate higher-order
variational approximation (based on expectation propaga-
tion [14]) to marginalize latent GPs. We improve compu-
tational efficiency via a low rank representation of the GP
covariance, an innovation that could be applicable to many



other models with high-dimensional Gaussian variables.
Our second major contribution is a procedure for learn-

ing the various model hyperparameters, including image-
dependent GP covariance functions, from example human
segmentations. Using training images from the Berkeley
segmentation dataset [12], we calibrate our model, and then
evaluate its accuracy in segmenting various images of nat-
ural scenes [12, 16]. Our results show significant improve-
ments over prior work with PY process models [25], and
demonstrate segmentations that are both qualitatively and
quantitatively competitive with state-of-the-art methods.

2. Nonparametric Bayesian Segmentation
We have two primary requirements of any segmentation

model – a) it should adapt to image complexity and auto-
matically select the appropriate number of segments and
b) it should encourage spatial neighbors to cluster together.
Furthermore, human segmentations of natural scenes con-
sist of segments of widely varying sizes. It has been ob-
served that histograms over segment areas [12] and contour
lengths [19] are well explained by power law distributions.
Thus a third requirement is to model this power-law behav-
ior. In this section, we first describe our image represen-
tation and then review increasingly sophisticated models
which satisfy these requirements. Finally, in Sec. 2.4, we
propose a novel low-rank model which improves computa-
tional efficiency while retaining the above desiderata .

2.1. Image Representation

Each image is dicided into roughly 1,000 superpix-
els [20] using the normalized cuts spectral clustering algo-
rithm [23]. The color of each superpixel is described using
a histogram of HSV color values with Wc = 120 bins. We
choose a non-regular quantization to more coarsely group
low saturation values. Similarly, the texture of each su-
perpixel is modeled via a local Wt = 128 bin texton his-
togram [13], using quantized band-pass filter responses. Su-
perpixel n is then represented by histograms xn = (xtn, x

c
n)

indicating its texture xtn and color xcn.

2.2. PitmanYor Mixture Models

Pitman-Yor mixture models extend traditional finite mix-
ture models by defining a Pitman-Yor (PY) process [17]
prior over the distribution of mixture components. The dis-
tributions sampled from a PY process are countably infi-
nite discrete distributions which place mass on infinitely
many mixture components. Furthermore, these discrete
distributions follow a power law distribution and previ-
ous work [25] has shown that they model the distribution
over human segment sizes well. There are various ways
of formally defining the PY process, here we consider the
stick breaking representation. Let π = (π1, π2, π3, . . .),∑∞

k=1 πk = 1, denote an infinite partition of a unit area

region (in our case, an image). The Pitman-Yor process de-
fines a prior distribution on this partition via the following
stick-breaking construction:

πk = wk

k−1∏
ℓ=1

(1− wℓ) = wk

(
1−

k−1∑
ℓ=1

πℓ

)
wk ∼ Beta(1− αa, αb + kαa)

(1)

This distribution, denoted by π ∼ GEM(αa, αb), is de-
fined by two hyperparameters (the discount and the con-
centration parameters) satisfying 0 ≤ αa < 1, αb > −αa.
It can be shown that E[πk] ∝ k−1/αa , thus exhibiting the
aforementioned power law distribution.

For image segmentation, each index k is associated with
a different segment or region with its own appearance mod-
els θk = (θtk, θ

c
k) parameterized by multinomial distribu-

tions on the Wt texture and Wc color bins, respectively.
Each superpixel n then independently selects a region zn ∼
Mult(π), and a set of quantized color and texture responses
according to

p
(
xt
n, x

c
n | zn,θ

)
= Mult

(
xt
n | θtzn ,Mn

)
Mult(xc

n | θczn ,Mn)

(2)
The multinomial distributions themselves are drawn from a
symmetric Dirichlet prior with hyper-paramter ρ. Note that
conditioned on the region assignment zn, the color and tex-
ture features for each of the Mn pixels within superpixel n
are sampled independently. The appearance feature chan-
nels provide weak cues for grouping superpixels into re-
gions. Since, the model doesn’t enforce any spatial neigh-
borhood cues, we refer to it as the “bag of features” (BOF)
model.

2.3. Spatially Dependent PY Mixtures

Next, we review the approach of Sudderth and Jor-
dan [25] which extends the BOF model with spatial group-
ing cues. The model combines the BOF model with ideas
from layered models of image sequences [28], and level set
representations for segment boundaries [6].

We begin by elucidating the analogy between PY
processes and layered image models. Consider the
PY stick-breaking representation of Eq. (1). If we
sample a random variable zn such that zn ∼ Mult(π)
where πk = wk

∏k−1
ℓ=1 (1− wℓ), it immediately follows that

wk = P[zn = k | zn ̸= k − 1, . . . , 1]. The stick-breaking
proportion wk is thus the conditional probability of choos-
ing segment k, given that segments with indexes ℓ < k have
been rejected. If we further interpret the ordered PY seg-
ments {k = 1, . . .∞} as a sequence of layers, zn can be
sampled by proceeding through the layers in order, flipping
biased coins (with probabilities wk) until a layer is cho-
sen. Given this, the probability of assignment to subsequent
layers is zero; they are effectively occluded by the chosen
“foreground” layer.

The spatially dependent Pitman-Yor process of [25] pre-



Figure 1. Generative models of image partitions. Left. Spa-
tially dependent PY model, (right) low rank model. Shaded nodes
represent observed random variables. vk ∼ N (0, ID) is a low
dimensional Gaussian random variable and uk is the correspond-
ing N dimensional layer. wk ∼ Beta(1− αa, αb + kαa) con-
trols expected layer size and are governed by Pitman-Yor hyper-
parameters α = (αa, αb). The Dirichlet hyper-parameters ρ =
(ρt, ρc) parametrize appearance distributions. Finally, the color
and texture histograms describing super-pixel n are represented as
xn = (xt

n, x
c
n)

serves this PY construction, while adding spatial depen-
dence among super-pixels by associating a layer (real val-
ued function) drawn from a zero mean Gaussian process
(GP) uk ∼ GP (0,Σ) with each segment k. Σ captures the
spatial correlation amongst super-pixels, and without loss
of generality we assume that it has a unit diagonal. Each
super-pixel can now be associated with a layer following
the procedure described in the previous paragraph, n.e.,

zn = min
{
k | ukn < Φ−1(wk)

}
, ukn ∼ N (0,Σnn = 1) (3)

Here, ukn ⊥ uℓn for k ̸= ℓ and Φ(u) is the standard normal
cumulative distribution function (CDF). Let δk = Φ−1(wk)
denote a threshold for layer k. Since Φ(ukn) is uniformly
distributed on [0, 1], we have

P[zn = 1] = P[u1n < δ1] = P[Φ(u1n) < w1] = w1 = π1

P[zn = 2] = P[u1n > δ1]P[u2n < δ2] = (1− w1)w2 = π2
(4)

and so on. The extent of each layer is determined via the re-
gion on which a real-valued function lies below the thresh-
old δlayer, akin to level set methods. If Σ = I, we recover
the BOF model. More general covariances can be used to
encode the prior probability that each feature pair occupies
the same segment; developing methods for learning these
probabilities is a major contribution of this paper.

The power law prior on segment sizes is re-
tained by transforming priors on stick proportions
wk ∼ Beta(1− αa, αb + kαa) into corresponding ran-
domly distributed thresholds δk = Φ−1(wk):

p(δk | α) = N (δk | 0, 1) · Beta(Φ(δk) | 1− αa, αb + kαa) (5)

Figure 1 displays corresponding graphical model. Image
features are generated as in the BOF model.

2.4. LowRank Representation

In the preceding generative model, the layer support
functions uk ∼ N (0,Σ) are samples from a Gaussian dis-
tribution over N super-pixels. Inference involving GPs in-
volve inverting Σ which is in general a O(N3) operation
and thus scales poorly with increasing image sizes. To cope,
we employ a low-rank representation based on D ≤ N di-
mensions, analogous to factor analysis models. We pro-
ceed by defining a Gaussian distributed D dimensional la-
tent variable vk ∼ N (0, ID), we then set uk = Avk + ϵk,
where A is a N-by-D dimensional factor loading matrix
and ϵk ∼ N (0,Ψ), with Ψ being a diagonal matrix. Ob-
serve that marginalizing over vk results in a model equiv-
alent to the full rank model of the preceding section with
Σ = AAT + Ψ. The low rank model replaces the O(N3)
operation with an O(ND2) operation, thus scaling linearly
with N 1. Figure 1 displays the corresponding graphical
model.

3. Inference
This section describes a novel, robust to local optima, in-

ference algorithm which is an example of a Maximization
Expectation (ME) [29] technique. In contrast to the pop-
ular Expectation Maximization algorithms, ME algorithms
marginalize model parameters and directly maximize over
the latent variables. In our model, the latent variables cor-
respond to segment assignments of super-pixels (zn). Any
configuration of these variables defines a partition of the im-
age. Our strategy is to explore the space of these image par-
titions by climbing the posterior p (z | x, η) surface, where
η = {α, ρ,A,Ψ}. It is worth noting that since different par-
titions will have different numbers of segments, we are in
fact searching over models of varying complexities akin to
traditional model selection techniques.

The algorithm proceeds by first evaluating the posterior
for an initial image partition z. It then modifies the partition
in an interesting fashion to generate a new partition z′ which
is accepted if p(z′ | x, η) ≥ p(z | x, η). This process is
repeated until convergence. By caching the various mutated
partitions, we approximate the posterior distribution over
partitions (Figure 5). In what follows, we first describe the
innovations required for evaluating the posterior marginal
and then the procedure for mutating a partition.

3.1. Posterior Evaluation

In our model (Figure 1), the posterior p (z | x, η) factor-
izes as p (z | x, η) ∝ p (x | z, ρ)p (z | α,A,Ψ). The like-
lihood:

p (x | z, ρ) =
∫
Θ

p (x | z,Θ)p (Θ | ρ)dΘ (6)

1A complete time complexity analysis is available in the supplement.



is a standard Dirichlet-multinomial integral and can be eval-
uated in closed form2.

Unfortunately, the prior can’t similarly be evaluated in
closed form. Significant innovations are required for its
computation and the remainder of this section details a ma-
jor contribution of this paper, an algorithm for evaluating
p (z | η).

p (z | η) =
K(z)∏
k=1

∫
uk

∫
δk

∫
vk

p (z | δk,uk)

p (uk,vk | A,Ψ) p (δk | α)dvkdukdδk

(7)

where K(z) represents the number of layers in partition z.
To simplify notation in the remainder of this paper we de-
note K(z) simply by K. Note that in the BOF model z
depends only on α and p(z|α) can be calculated in closed
form:

p(z | α) = αK
a

Γ (αb/αa +K) Γ(αb)

Γ(αb/αa)Γ(N + αa)

(
K∏

k=1

Γ(Mk − αa)

Γ(1− αa)

)
(8)

where N is the number of super-pixels in the partition and
Mk is the number of super-pixels in layer k.

Spatial prior evaluation. The integrals in equa-
tion 7 can be evaluated independently for each layer. In
the following analysis, it is implied that we are deal-
ing with the kth layer and we drop the explicit depen-
dence on k in our notation. We approximate the joint
distribution p(u,v, δ, z | η) with a Gaussian distribution
q(u,v, δ, z | η) and the corresponding marginal p(z | η)
with q(z | η), which is easy to compute. We use expectation
propagation (EP) [14] to estimate the Gaussian “closest” to
the true joint distribution.

Recall that our model assigns super-pixel n to the first
layer k whose value is less than the layer’s threshold (δ),
thus setting zn = k. Equivalently, we can introduce a bi-
nary random variable tn for each layer k, whose value is
deterministically related to zn as follows:

tn =

{
+1 if zn = k =⇒ un < δ
−1 if zn > k =⇒ un > δ

(9)

Note that super-pixels with zn < k have already been as-
signed to preceding layers and can be marginalized out be-
fore inferring the latent Gaussian layer for the kth layer. We
can now express the joint distribution in terms of t :

p(u,v, δ, t | η) = p(v) p(δ | α)
N∏

n=1

p(un | v)p(tn | un, δ) (10)

Furthermore, since for a given partition t is known, we
can condition on it to get

2The result follows from Dirichlet multinomial conjugacy. Please see
the supplement for relevant details

p(u,v, δ | t, η) = 1

Z
N (v | 0, I) p(δ|α)

N∏
n=1

N (un | aTnv, ψn)I(tn(δ − un) > 0)
(11)

where Z is the appropriate normalization constant. Note
that the indicator functions I(tn(δ − un) > 0) and the
threshold prior p(δ | α) are the only non Gaussian terms.
We approximate these with un-normalized Gaussians, lead-
ing to the following approximate posterior

q(u,v, δ | t, η) = 1

ZEP
N ([vT uT δ]T | µ≈,Σ≈) (12)

where ZEP ensures appropriate normalization. We now it-
eratively refine the Gaussian approximation using EP 3. At
convergence we compute ZEP =

∫
u

∫
v

∫
δ
q(u,v, δ, t | η)

which is prior for the kth layer. Finally, we have
p(z|η) ≈

∏K
k=1 ZEPk

.
With the expression for prior in hand, we can now com-

pute the log posterior marginal

log p(z | x, η) = γ log p(x | z, ρ) +
K∑

k=1

logZEPk
(13)

The parameter γ is used to weight the likelihood appropri-
ately. We set γ = 1

m̄ , where m̄ is the average number of
pixels per super-pixel. Recall that our likelihood treats pix-
els within a super-pixel as independent random variables,
necessitating the above down weighting.

3.2. Search over partitions

Armed with the ability to evaluate the posterior probabil-
ity mass for a given image partition, we explore the space
of partitions using discrete search. The search performs hill
climbing on the posterior surface and explores high proba-
bility regions of the partition space. This is similar in spirit
to MCMC techniques. Perhaps most similar to our approach
is the data driven MCMC approach of Tu et al. [27], which
uses a version of the Metropolis-Hastings algorithm along
with clever data driven proposals to explore the posterior
space. Here, we forgo the requirement of eventually con-
verging to the true posterior distribution in exchange for the
ease of incorporating flexible search moves and the ability
to quickly explore high probability regions of the posterior.
Given a partition we propose a new candidate partition by
stochastically choosing one of the following moves:
Merge. Two layers in the current partition are merged into
a single layer.
Split. A layer is split into two layers, which are adjacent in
layer order. We employ two types of shift moves. Given a

3Applying EP to our low dimensional model requires an interesting
combination of Gaussian belief propagation and expectation propagation.
Due to space limitations we haven’t included the details of EP here, but all
relevant details can be found in the supplement.



layer to be split, the first move works by randomly select-
ing two seed super-pixels and then assigning all remaining
super-pixels to the closest (in appearance space) seed. The
initial seeds are chosen such that with high probability they
are far in appearance space. The second move employs a
connected component operation. If the given layer has dis-
connected components then one such disconnected compo-
nent is sampled at random and deemed to be a new layer.
Swap. The swap move reorders the layers in the current
partition, by selecting two layers and exchanging their or-
der.
Shift. The shift move refines the partitions found by the
other moves. It iterates over all super-pixels in the image
assigning each to a segment which maximizes the poste-
rior probability 4. Observe that the merge and split moves
change the number of layers in a partition performing model
selection, while swap and shift attempt to find the optimal
partition given a model order.

4. Learning from Human Segmentations
In this section, we provide methods for quantitatively

calibrating the proposed models to appropriate human seg-
mentation biases. Recall that our model has four hyper-
parameters, the PY region size hyper-parameter (α), the
appearance hyper-parameter (ρ) and the GP covariance pa-
rameters (A and Ψ). We tune these to the human segmen-
tations from the 200 training images of the Berkeley Seg-
mentation Dataset (BSDS) [12]. We show that in spite of
the inherent uncertainty in the segmentations of an image,
we are able to learn important low level grouping cues.

Learning size and appearance hyper-parameters.
The optimal region size hyper-parameters are the ones that
best describe the statistics of the training data. We se-
lect α̂ = (α̂a, α̂b) by performing a grid search over 20
evenly spaced αa and αb candidates in the intervals [0, 1]
and [0.5, 20] respectively and choosing values which max-
imize the model’s likelihood of the training partitions ac-
cording to equation 8. The appearance hyper-parameters
ρ̂ = (ρ̂t, ρ̂c) are tuned through cross validation on a sub-
set of the training set. For BSDS, the estimated parameters
equal α̂a = 0.15, α̂b = 1 ρ̂t = 0.01 and ρ̂c = 0.01

Learning covariance kernel hyper-parameters. The
covariance kernel governs the type of layers that can be ex-
pressed by the model. Estimating it accurately is crucial for
accurately partitioning images. In [25, 24] the authors use
various heuristics to specify this kernel. Here, we take a
more data driven approach and learn the kernel from human
segmentations. While we cannot expect our training data

4A naive shift move would evaluate the posterior probability of the par-
tition after every super-pixel shift. This proves to be prohibitively expen-
sive, instead we develop an alternative which allows us to evaluate the
posterior after one complete sweep through the super-pixels while ensur-
ing that each individual shift by-and-large increases the posterior. Please
see the supplement for details.

to provide examples of all important region appearance pat-
terns, it does provide important cues. In particular like [9],
we learn to predict the probability that pairs of super-pixels
occupy the same segment via human segmentations.

For every pair of super-pixels, we consider several po-
tentially informative low-level cues: (i) pairwise Euclidean
distance between super-pixel centers; (ii) intervening con-
tours, quantified as the maximal response of the probability
of boundary (Pb) detector [13] on the straight line linking
super-pixel centers; (iii) local feature differences, estimated
via log empirical likelihood ratios of χ2 distances between
super-pixel color and texture histograms [20]. To model
non-linear relationships between these four raw features and
super-pixel groupings, each feature is represented via the
activation of 20 radial basis functions, with the appropriate
bandwidth chosen by cross-validation. Concatenating these
gives a feature vector ϕij for every super-pixel pair i, j. We
then train a L2 regularized logistic regression model to pre-
dict the probability of two super-pixels occupying the same
segment qij . Figure 2 illustrates the effect of these cues on
partitions preferred by the model.

When probabilities are chosen to depend only on the dis-
tance between super-pixels the distribution constructed de-
fines a generative model of image features. When these
probabilities also incorporate contour cues, the model be-
comes a conditionally specified distribution on image parti-
tions, analogous to a conditional random field [10].

From probabilities to correlations. Recall that our lay-
ers are functions sampled from multivariate Gaussian dis-
tributions, with covariance Σ with unit variance and a po-
tentially different correlation cij for each super-pixel pair
i, j. For each super-pixel pair, qij is independently deter-
mined by the corresponding correlation coefficient cij . As
detailed in the supplement there exists an one-to-one map-
ping between the pairwise probabilities and correlations, al-
lowing us to go from the logistic regression outputs (qij)
to correlation matrices. These correlation matrices (C),
learned from pairwise probabilities will in general not be
positive semi-definite (PSD). We cope by finding the clos-
est PSD unit diagonal matrix to the correlation matrix. We
use the recently proposed technique of Borsdorf et al. [3],
which solves for A and Ψ by minimizing the Frobenius
norm||C − (AAT +Ψ)||F . It should be noted that even
the heuristic approaches of Sudderth and Jordan [25] and
Shyr et al. [24] can yield non PSD correlation matrices.
There the authors ensure positive semi-definiteness by per-
forming an eigen-decomposition of C and retaining only
non-negative eigenvalues. This is a cruder approximation
and leads to poor results (Figure 2).

5. Spatially dependent PY model properties
In this section, we explore various properties of our

model which may not be immediately obvious.



Figure 2. Model Properties. TOP- Prior samples from mod-
els employing heuristic distance+pb [25], learned distance (PY-
dist) , learned distance+pb and all cues (PYall) based covariances.
CENTER- Layered segmentations produced by our method. BOT-
TOM - Three layer synthetic partitions illustrating preferred layer
orderings, Layer 1 is displayed in blue and Layer 2 in green. Left
to right: Partition 1 (blue = low; red = high), the inferred Gaus-
sian function for layers 1 and 2, partition 2 and the corresponding
Gaussian functions. Under our model, partition 1 has a log proba-
bility of −77 while partition 2 has a log probability of −90.

Prior samples. Our model defines a distribution over
image partitions, which can be partially assessed by visual-
izing partitions sampled from the prior. Figure 2 displays
such samples. Note that the samples from the conditionally
specified models better reflect the structure of the image.

Layers. Our model produces partitions made up of lay-
ers, not segments. These layers can have multiple connected
components, due to either occlusion by a foreground layer,
or a layer support function with multimodal shape. The in-
ferred partitions illustrated in the second row of figure 2
illustrate this point. The model groups all buffaloes (in the
first image), non-contiguous portions of sky, grass and trees
(in the second and third images) in the same layer. Tradi-
tional segmentation algorithms, having no notion of layers,
would assign each non contiguous region to a separate seg-
ment. Our layered representation provides a higher level
representation of the scene than is possible with a collection
of segments, which allows us to naturally deal with complex
visual phenomena such as occlusion.

Implicit prior on layer order. Recall that a partition is
an ordered sequence of layers, and the likelihood of a par-
tition is governed by the likelihood of its constituent lay-
ers. Note that reordering layers can change the set of sup-
port functions which produce those layers, which in turn
makes certain orderings preferable to others. In general,
our GP priors prefer simple shapes over complicated ones
and hence our model prefers explaining complicated shapes
via an occlusion process. Figure 2 illustrates these ideas us-
ing two synthetic partitions with the order of layers 1 and 2
flipped. The model 5 prefers the partition in the first column

5Here, we have used a squared exponential covariance kernel with
length scale set to half of the partition’s diagonal length.

over the one in fourth. As can be seen from the inferred
layers, partition 1 is explained by the model using simpler
Gaussian functions, while partition 2 has to be explained us-
ing more complicated and hence less likely Gaussian func-
tions.

6. Experimental Results
In this section we present quantitative evaluations of var-

ious aspects of the proposed model along with qualitative
results. In all experiments, our model (PYall) used a 200
dimensional low rank representation and ran 200 discrete
search iterations, with three random restarts.

Experimental Setup. We benchmark the algorithm on
the Berkeley Image Segmentation Dataset (BSDS300 [12])
and a subset of of Oliva and Torralba’s [16] eight natural
categories dataset. We sampled the first 30 images from
each of the eight categories to create a 240 image dataset.

The performance of the algorithms are quantified using
the probabilistic Rand Index (PRI) [18], and the segmen-
tation covering (SegCover) metric [2]. The partitions pro-
duced by our model are made up of layers, which may not
be spatially contiguous. However, the benchmarks we eval-
uate on, define segments to be spatially contiguous regions.
To produce these we run connected components on the lay-
ers splitting them into spatially contiguous segments.

Quantifying model enhancements. This paper im-
proves on both the model (PYheur) and the corresponding
inference algorithm presented in [25] . To quantify the per-
formance gains solely from model enhancements we devise
the following test. On BSDS300 test images, we compare
the log-posterior assigned to the ground truth human seg-
mentations p(zgt|x, η) under both models. Since, we al-
ready have access to zgt no inference is required and the
model which assigns higher probability mass to the ground
truth, models the data better. Figure 3 presents a scatter plot
comparing both models. It is easy to see that PYall models
human segmentations significantly better.

Evaluating inference enhancements. Next, we evalu-
ate the performance improvements resulting from the novel
inference algorithm6. Figure 3 displays the result of running
mean field and search based inference from 10 random ini-
tializations for a given test image. The log-likelihood plots
clearly demonstrate mean field being susceptible to local
minima. In contrast, EP based search exhibits robustness
and all chains converge to high probability partitions. The
bottom row displays the best and worst partitions found by
mean field and search. As one would expect, there is wide
variability in the quality of mean field partitions, while the
search partitions are consistently good. The rightmost top
row plot displays randomly chosen partitions from the 10
EP search runs. It demonstrates a high correlation between

6100 search iterations takes about 30 minutes on a standard quadcore
with 4GB of ram.
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Figure 3. Model and inference comparison. TOP (Left to right)
Log-likelihood (ll) trace plots of mean field runs, search runs, scat-
ter plot comparing PYall and PYheur, scatter plot of ll vs Rand
index. BOTTOM (Left to right) Test image, partitions with highest
and lowest ll found by mean field, best and worst search partitions.

BSDS300 LabelMe
Ncuts MS FH gPb PYheur PYdist PYall gPb PYall

PRI 0.73 0.77 0.77 0.80 0.60 0.69 0.76 0.74 0.73
segCover 0.40 0.48 0.53 0.58 0.45 0.50 0.54 0.54 0.55

Table 1. Quantitative performance of various algorithms on
BSDS300 and LabelMe.

log likelihoods and rand indexes, again verifying that the
partitions favored by our model are also favored by humans.

Comparison against competing methods. In this pa-
per, our goal is not to produce one “optimal” segmentation
but to provide a tractable handle on the posterior distribution
over image partitions. Nevertheless, here we demonstrate
that by summarizing the posterior with the MAP partition
we produce results which are competitive with the state-of-
the-art segmentation techniques. We compare against four
popular segmentation techniques: Mean Shift (MS) [5],
Felzenszwalb and Huttenocher’s graph based segmentation
(FH) [7], Normalized cuts [23] and gPb contour based seg-
mentation [2]7. In addition, we also compare against a ver-
sion of our model which uses only distance cues for learning
the covariance kernel (PYdist). Table 1 displays the quanti-
tative numbers achieved on the BSDS300 test set. Figure 4
demonstrates qualitative differences amongst the methods.
PYall is significantly better than both PYheur and PYdist.
According to a Wilcoxon’s signed rank test (at an 0.01 sig-
nificance level) it is also significantly better than Ncuts and
MS (on segCover metric, within noise on PRI), within noise
of FH and statistically worse than gPb on the BSDS300
dataset.

Next, in order to test generalizability, we compare PYall
against the top performing method on BSDS – gPb on the
LabelMe dataset. The parameters for either method were
tuned on BSDS and were not re-tuned to the LabelMe
dataset. Table 1 displays the results. PYall and gPb are
now statistically indistinguishable.

7All model parameters were tuned by performing a grid search on the
training set. See supplement for more details.

Figure 5. Diverse Segmentations. Each row depicts multiple par-
titions for a given image. Partitions in the second column are
the MAP estimates. Other partitions with significant probability
masses are shown in the third and fourth columns.

Posterior Summary. Perhaps, a more accurate assess-
ment of our model involves exploring the posterior distri-
bution over partitions. In Figure 5 we summarize the pos-
terior distributions, for a few randomly chosen test images,
by presenting a set of high probability partitions discovered
by our algorithm. It is worth noting that the set of multi-
ple partitions produced by our method is richer than those
produced by a single multi-resolution segmentation tree [2].
For instance, the partitions in the third and fourth columns
of the first two rows of Figure 5 are mutually inconsistent
with any one segmentation tree, but are nonetheless pro-
duced by our algorithm. More interesting ways of leverag-
ing the distribution over partitions is an important direction
of future work.

7. Discussion
Starting with a promising Bayesian nonparametric

model of images partitions, we have developed substan-
tially improved algorithms for learning from example hu-
man segmentations, and robustly inferring multiple plausi-
ble segmentations of novel images. By defining a consistent
distribution on segmentations of varying resolution, this de-
pendent PY process provides a promising building block for
other high-level vision tasks.
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