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Abstract

The distance dependent Chinese restaurant process (ddCRP) and its hierarchical
extensions provide a flexible framework for clustering data with temporal, spa-
tial, or other non-exchangeable dependencies. The successful application of these
models crucially depends on functions chosen to encode structural dependencies
exhibited by the data. Designing such affinity functions is challenging and often
involves significant trial and error. Here, we explore methods for learning these
functions from human annotated data. Leveraging recent advances in approximate
Bayesian computation (ABC) we design algorithms that are effective at learning
affinity functions from collections of human annotated image and video partitions
and at achieving competitive results on standard benchmarks.

1 INTRODUCTION

Visual data exhibits strong spatial and temporal dependencies, and motivates methods capable of
handling such correlations. Distance dependent models [1, 2, 3] leverage user specified affinities
to model correlations in the data and provide flexible distributions over part based representations
of images and videos. They represent partitions (or binary feature matrices) via links between data
instances: each observation links to one other, and the probability of linking to nearby instances is
higher. Closeness is measured according to affinities which may be arbitrarily specified to capture
domain knowledge. The connected components of the induced link graph then partitions the dataset.
When applied to visual data they produce representations useful for higher level tasks, for example,
scene understanding.

Successful application of distance dependent models hinge critically on the specification of affinity
functions. However, designing affinity functions can be challenging, especially for hierarchical vari-
ants [2] where affinities must be specified both among data instances and between latent clusters.
As a result previous works [1, 4, 5, 6] have resorted to simple affinity functions that may be subop-
timal at capturing complex dependencies exhibited by real world data. Here, we introduce feature
augmented models that express affinities as linear combinations of user specified (weak) “cues” en-
coding similarities between data instances and between clusters. The feature weights capture the
relative importance of different cues and are learned from human provided partitions. Since, only
labeled partitions are observed and not the underlying links, innovations are necessary for approx-
imately marginalizing over the exponentially large set of latent links. Further, the complex noise
process employed by humans while explaining visual data produces partitions that exhibit high vari-
ance( Figure 1) and is challenging to model. We develop algorithms that leverage recent advances in
approximate Bayesian computation (ABC) [7] to marginalize over the latent links without requiring
an explicit specification of the noise process. Experiments on standard image and video bench-
marks demonstrate the effectiveness of the proposed methods with learned models achieving results
competitive with the state-of-the-art.
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Figure 1: Human interpretations of natural images (and other visual data) exhibit wide variability. Here
we have two images from the Berkeley segmentation dataset and corresponding segmentations produced by
different expert annotators.

2 HIERARCHICAL DISTANCE DEPENDENT PARTITIONS

The distance-dependent CRP [1] defines a distribution over partitions through links between data
instances. Each data point i has an associated latent link variable ci which links to another data

instance j, or itself, according to the distribution p (ci = j | A,α) ∝
{

Aij i ̸= j,
α i = j,

where affinity

Aij ∈ R+
0 , the set of non-negative real numbers. For notational convenience we denote ci ∼

ddCRP(α,A) to denote the distribution of links. The resulting link structure induces a partition,
where two data instances are assigned to the same cluster if and only if one is reachable from the
other by traversing the link edges.

The hierarchical ddCRP (hddCRP) [2] defines a distribution over partitions of grouped data. It
applies the ddCRP formalism twice, once for clustering data within a group into local clusters, and
again for coupling local clusters across groups. The resulting distribution over partitions places
higher probability mass on partitions that group nearby data points into latent clusters, and couple
similar local clusters into global components. Given a collection of G groups with Ng observations
each, we associate a latent data link with instance i in group g, cgi which is distributed according
to a group specific ddCRP(αg, A

g). The connected components of the links cg = {cgi | i =
1, . . . , Ng} then determine the local clustering for group g. Data links c = {c1, . . . , cG} across
all groups divide the dataset into a set of local clusters T (c). We further associate each cluster
t ∈ T (c) with a latent cluster link kt drawn from a global (transcending groups) ddCRP distribution

p(kt = s | α0, A
0(c)) ∝

{
A0

ts(c) t ̸= s,
α0 t = s,

where α0 is a global self-affinity parameter, and

A0(c) is the set of pairwise affinities between local clusters in T (c). The connected components
of k = {kt | t ∈ T (c)} then couple local clusters into global components that are shared across
groups. Since the data links c are conditionally independent given A1:G, and cluster links k are
conditionally independent given c and A0(c), the distribution induced over partitions, factorizes as,

p(c,k | ϑ) =
G∏

g=1

Ng∏
i=1

p(cgi | αg, A
g)

∏
kt∈k

p(kt | c, α0, A
0(c)), (1)

with ϑ = {α1:G, α0, A
1:G, A0}.

3 LEARNING DISTANCE DEPENDENT MODELS

In this section, we present the main contribution of this paper – feature augmented distance depen-
dent models that use linearly parametrized affinity functions. The affinity between data instances i
and j is modeled as Aij = f(wT

c θ
c
ij), where θcij ∈ RM are user specified features, wc ∼ N (0,Ψc)

and f is a monotonic nonlinear function that maps its argument to R+
0 . The affinity between latent

clusters t and s is similarly modeled as A0
ts = f(wT

k θ
k
ts), wk ∼ N (0,Ψk). The features θ encode

weak cues, such as the spatial distance or the strength of intervening contours between pixels.

The weight parameters w = [wT
c , w

T
k ]

T need to be learned from annotated training partitions
Y = {y1 . . . yD}. A partition d containing Nd data instances is labeled with a vector yd ∈ NNd×1

encoding the allocation of data instances to partition elements. For example, if the first element of
the partition belongs to a component labeled l then yd1 = l. Learning is complicated by two facts.
First, our partitions are defined indirectly through links between data instances (and clusters). The
mapping from links to partitions is many-to-one with exponentially many link combinations gener-
ating the same partition. To cope with this intractability we develop algorithms that approximately
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marginalize over the exponentially large set of links and explore the marginal distribution p(w | Y ).
The corresponding joint distribution p(w, Y ) = p(w)p(Y | w) requires the specification of the like-
lihood model p(Y | w). This brings us to the second challenge. Human interpretations of images
and videos vary wildly (Figure 1), exhibiting both large intra and inter annotator variance and the
generative process employed by humans to partition visual data is difficult to model. We deal with
this challenging issue by resorting to likelihood free approximate Bayesian computation(ABC) [7]
techniques. ABC algorithms assume that simulation of the likelihood model is tractable even though
the model itself might be intractable. Inferences about latent variables are then made by matching
summary statistics of the simulated and observed data. We build on the efficient MCMC based ABC
algorithms [7] that sample from a target distribution whose support is restricted to some neighbor-
hood around the observed data. The target distribution for the hddCRP is,

p(c,k, w, Y ) ∝ p(w)
D∏

d=1

p(cd | wc)p(kd | cd, wk)δ(Λ(cd,kd), yd),

δ(ya, yb) =

{
1 if ∆(ya, yb) < ϵ,
0 otherwise,

(2)

where Λ(cd,kd) represents the partition induced by links cd and kd. The distribution’s support is
restricted to those simulated partitions that are at most ϵ away from human produced partitions Y .
The notion of closeness is captured via a loss function ∆(ya, yb) = 1 − RI(ya, yb) that is invari-
ant to arbitrary labelings of the partition. Here, RI(ya, yb) ∈ [0, 1] measures the Rand index [8]
between partitions ya and yb, with 1 indicating perfect agreement. The target distribution for the dd-
CRP model is analogous. With a sufficiently small threshold ϵ, the MCMC-ABC sampler produces
samples from the marginal posterior density p(w | Y ) which is sufficiently concentrated around
realizations of w that favor human annotated partitions.

We initialize the sampler with human annotated partitions by setting {Λ(cd,kd) = yd}Dd=1, instead
of following the standard procedure [7, Algo. 3] of initializing via a rejection sampler that samples
the prior distribution till a sample with non-zero probability (i.e., a partition within the threshold) is
encountered. In the high dimensional space of partitions such an initialization procedure is extremely
inefficient, and would render the entire algorithm ineffective. Conditioned on Λ(cd,kd), we use a
random walk Metropolis Hastings step with and accept proposal w∗ ∼ N (w, νI) with probability
∝ min(1, ρ). Here ν is a free parameter controlling the scale of the proposals. The acceptance ratio
ρ is,

ρ =
p(c,k, w∗, Y )q(wc, wk | w∗

c , w
∗
k)

p(c,k, w, Y )q(w∗
c , w

∗
k | wc, wk)

=

p(w∗
c )

∏
d

p(cd | w∗
c )p(kd | cd, w∗

k)

p(wc)
∏
d

p(cd | wc)p(kd | cd, wk)
. (3)

Conditioned on w∗, we propose links c∗,k∗1. Our MCMC-ABC sampler repeatedly iterates be-
tween these two sampling blocks. After running the sampler for a sufficiently long period we ap-
proximate the posterior marginal p(w | Y ) with a Monte-Carlo estimate and summarize it using its
mode,

ŵ ≈ argmax
w∈{w(1),...,w(S)}

S∑
s′=1

p(c(s
′),k(s′), Y | w)p(w) . (4)

Learning the feature augmented ddCRP model proceeds analogously via a MCMC-ABC sampler
designed to explore the target density, p(c, wc, Y ) ∝ p(wc)

∏D
d=1 p(cd | wc)δ(Λ(cd), yd). Again,

we use a random walk MH proposal w∗
c ∼ N (wc, νcI) for proposing weights governing data links

c. Conditioned on the weights we sample c using a straightforward Gibbs step, cdi | c−di, wc, Y ∼
p(cdi | wc)δ(Λ(cd), yd).

4 DISTANCE DEPENDENT MIXTURES

Armed with ABC based learning, the distance dependent models provide expressive distributions
over partitions. When coupled with a data generating mechanism they provide a flexible tool for

1See Appendix for details
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Figure 2: Graphical model representations for the feature augmented ddCRP and hddCRP models. In the
ddCRP mixture, a partition is sampled from the feature augmented ddCRP prior with data links sampled ac-
cording to ci ∼ p(ci | α,A) and a connected components operation generating the partition Λ. Each compo-
nent m of the partition is endowed with a parameter ϕm, sampled from a base distribution H(λ), responsible
for generating xi ∼ ϕm for i ∈ m. The affinities A are modeled via linear combination of features (θ),
Aij = f(wT

c θ
c
ij), wc ∼ N (0,Ψc). The hddCRP model introduces a hierarchy, first sampling partitions Λg

from group specific feature augmented ddCRPs and then sampling cluster links kt, t ∈ Λ1:G from a cluster
level feature augmented ddCRP, kt ∼ p(kt | α0, A

0(c)). Connected components of the cluster links define a
partition of the dataset Λ0. The nodes in red have been learned from human annotated partitions.

modeling partitions of visual data. Our generative procedure involves first sampling a partition.
Conditioned on the partition structure, we endow each component m with data generating parame-
ters ϕm ∼ H(λ) and generate an observation i in group g according to xgi ∼ p(xgi | ϕzgi). The
joint distribution of the model factorizes as,

p(x,k, c | ϑ, ŵ, θc, θk, λ) = p(c,k | ϑ, ŵ, θc, θk)
M(c,k)∏
m=1

∫ ∏
gi|zgi=m

p(xgi | ϕm) dH(ϕm | λ) (5)

where zgi encodes the global component membership of data instance xgi, M(c,k) is the num-
ber of components induced by the cluster and data links, ŵ = {ŵc, ŵk} indicate weights learned
from human partitions and λ parametrizes the base distribution H. The ddCRP mixture models are
similar but are defined for a single group and do not contain cluster links. Figure 2 provides the
corresponding graphical models. MCMC algorithms presented in [1, 2] can be used to infer the
posterior distributions over partitions.

5 APPLICATIONS

We use the learned dddCRP mixture models to extract segments from images and the hierarchical
ddCRP to extract spatio-temporal regions from videos (with each video frame corresponding to
a group). We compare them against distance dependent models that use hand crafted affinities
and have previously been shown to achieve competitive segmentation performance. We benchmark
the models on images from the eight natural scene categories [9] dataset available as part of the
LabelMe [10] collection and on videos from VSB100 [11] dataset. For the Labelme images, we
select 150 images from each of the eight categories and use 50 randomly chosen ones for training
category specific ddCRP models. For VSB100, we use the provided train (60) / test(40) split. We use
Rand index [8] to measure discrepancy from held out human annotated test segmentations. Figure 2
presents results achieved on these datasets. While we observe a small quantitative improvement for
the ddCRP mixtures, the benefits of learning are clearly evident for the hierarchical models, where
learning leads to significantly improved video segmentation performance.
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A Appendix

A.0.1 Link Proposals

To simplify the exposition, we focus on a particular group g and denote cgi as ci. We also consider a single
partition here and drop the explicit dependence on d from our notation. Let the current state of the sampler be
k(c) and c = {c−i, ci = j}, so that i and j are members of the same cluster tij . Let Ktij = {ks | ks =
tij , s ̸= tij} denote the set of other clusters linking to tij . We assume that Λ(c,k) is within ϵ of a training
partition y, with closeness measured according to Rand index.

Split? To construct our link proposal, we first set ci = i. This may split current cluster tij into two new
clusters, in which case we let ti denote the cluster containing data i, and tj the cluster containing formerly
linked data j. Or, the partition structure may be unchanged so that ti = tij .

Incoming links ks ∈ Ktij to a split cluster are independently assigned to the new clusters with equal probabil-
ity:

qin(Ktij ) =
∏

ks∈Ktij

(
1

2

)δ(ks,ti)
(
1

2

)δ(ks,tj)

=

(
1

2

)|Ktij
|

. (6)

The current outgoing link is retained by one of the split clusters, ktj = ktij .

Propose Link Next, we propose an instantiation of ci from the ddCRP prior distribution q(ci) = p(ci | α,A).

Merge? Let ci = j∗ denote the proposed data link. Relative to the reference configuration in which ci = i,
this link may either leave the partition structure unchanged, or cause clusters ti and tj∗ to merge into tij∗ . In
case of a merge, the new cluster retains the current outgoing link ktij∗ = ktj∗ , and inherits the incoming links
Ktij∗ = Kti ∪ Ktj∗ .

If a merge does not occur, but tij was previously split into ti and tj , the outgoing link ktj = ktij is kept fixed.
For newly created cluster ti, we then propose a corresponding cluster link kti from the prior over cluster links:

qout(kti) = p(kti | α0, A
0(c), c). (7)

Note that the proposal ci = j∗ may leave the original partition unchanged if ci = i does not cause tij to split,
and ci = j∗ does not result in a merge. In this case, the corresponding cluster links are also left unchanged.

Combining the two pairs of cases above and restricting the resulting partition to be within some ϵ of a human
annotated partition y gives us the proposal distributions,

q(c∗,k∗|c,k)=


q(c∗i )qin(K∗

tij ) split, merge,
q(c∗i ) no split, merge,
q(c∗i )qout(k

∗
ti)qin(K∗

tij ) split, no merge,
q(c∗i ) otherwise.

(8)

If ∆(Λ(c∗,k∗), y) < ϵ, the proposed links c∗ and k∗ are accepted according to the Metropolis rule, wlse they
are rejected.

A.1 Learning ddCRP weights

We first consider the covariate dependent ddCRP model. Here we have the following target distribution,

p(c, wc, Y ) ∝ p(wc)

D∏
d=1

p(cd | wc)δ(z(cd), yd), (9)

We explore the posterior p(c, wc | Y ) by embedding a random walk Metropolis Hastings step within the
ddCRP Gibbs sampler. We proceed by proposing wc from a Gaussian distribution:

w∗
c ∼ N (wc, νI), (10)

where ν is a free parameter controlling the scale of the proposals. The proposed w∗
c is accepted with probability

∝ min(1, ρc) where ρc is:

ρc =
p(c, w∗

c , Y )q(wc | w∗
c )

p(c, wc, Y )q(w∗
c | wc)

=

p(w∗
c )

∏
d

p(cd | w∗
c )

p(wc)
∏
d

p(cd | wc)
. (11)
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Next, we sample cluster links c using a Gibbs step:

cdi | c−di, wc, Y ∼ p(cdi | c−di, wc, Y )

∼ p(cdi | wc)δ(z(cd), yd).
(12)

Neither sampling step involves evaluating the likelihood’s normalization constant. After running the sampler
for a sufficiently long period of time and collecting S samples, we can estimate the MAP sample ŵ,

ŵ ≈ argmax
w∈{w(1),...,w(S)}

S∑
s′=1

p(c
(s′)
d , Y | w)p(w) . (13)

A.2 Image Segmentation Details

We model images as observed collections of “superpixels” [12], which are small blocks of spatially adjacent
pixels. Given a collection of superpixels our aim is to find segments made up of superpixels homogeneous
in appearance and whose size statistics loosely match with human annotated segments. Further, we restrict
ourselves to the problem of single image segmentation with G = 1 and drop the explicit dependence on g from
our notation. As a preprocessing step, we divide each image from the two datasets into approximately 1000
superpixels [12, 13] 2 using the normalized cut algorithm [14].3

A.2.1 Prior

We consider a few different ddCRP priors. First, for the fixed affinity version (ddCRP) we manually specify
data affinities that encourage spatial neighbors not separated by strong intervening contours to connect to one
another by setting Aij = (1 − bij) × 1[i, j]. Here, 0 ≤ bij ≤ 1 is the maximum Pb [15] response along
a straight line segment connecting the centers of superpixels i, j, and 1[i, j] takes a value of 1 if i and j
are spatial neighbors, and 0 otherwise. The self connection parameter α is set to 10−8. Next, in order to
learn the affinities we use signed distances between superpixel locations along x and y axes (δx = ri − rj ,
δy = yi − yj) as features encoding superpixel affinities. Here, ri and yi represent the x and y location of
superpixel i. The relative importance of these structural features are learned from data. Together with bij they
specify the learned-ddCRP prior over image partitions.

Aij = f(w, i, j) = (1 + exp(dij))
−1 × 1[i, j],

dij = wT
c θ

c
ij = wT

c [
ri − rj

R
,
yi − yj

Y
, bij ]

T ,
(14)

where R = max(|ri − rj |) and Y = max(|yi − yj |).

Both ddCRP and learned-ddCRP, through their dependence on image contours, describe conditional priors
on image partitions. We also consider a generative version that only considers superpixel locations: θcij =

wT
c [

ri − rj
R

,
yi − yj

Y
]T .

Qualitative comparisons Figure 3 illustrate partitions sampled from the learned ddCRP. We consider both
generative and conditional affinities. The generative affinities learn more general characteristics of the scene
category, for instance the tall buildings category contains partitions with vertical structures while the mountain
category consists of more triangular structures. Conditional samples adapt to particular images and more closely
reflect the particular structure of the image being conditioned on.

Figure 3 presents summary statistics computed from 10, 000 partitions sampled from learned generative affini-
ties. We find that the Forest, Street and Inside city categories on average have a larger number of segments per
partition. The ground truth partitions of these categories contain a large number of small segments, as a result
we learn weights that prefer smaller segments. In contrast, the Coast and Highway category human partitions
contain fewer but larger segments. This is again reflected in the learned weights, partitions of these categories
contain fewer segments. We also find that the segment sizes in the learned partitions roughly follow a power law
distribution, across all categories. This is a well known property exhibited by natural image segmentations [16].

A.2.2 Likelihood

We describe the texture of each superpixel via a local texton histogram [17], using band-pass filter responses
quantized to 128 bins. A 120-bin HSV color histogram is used to describe the color of the superpixel. Each
superpixel i is summarized via these histograms xi = {xc

i , x
t
i}. These histograms are treated as conditionally

2www.cs.sfu.ca/˜mori/
3www.eecs.berkeley.edu/Research/Projects/CS/vision/
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Figure 3: Samples from ddCRP priors with learned affinities. Rows display samples from a ddCRP model
trained on the Mountain, Tall building, Coast categories. The first three columns correspond to generative
samples while the two rightmost columns were generated by conditioning on the displayed image. Bottom:
Summary statistics of partitions sampled from ddCRP models with learned generative weights. Left: Empirical
distribution of the number of segments, broken down by the eight natural image category. Right: Number of
segments occupying varying proportions of the image area, on a log-log scale.

independent given the cluster allocations z and are modeled as samples from multinomial distributions with
Dirichlet priors.

xc
i ∼ Mult(ϕc

zi), ϕ
c
zi ∼ Dir(λc), xt

i ∼ Mult(ϕt
zi), ϕ

t
zi ∼ Dir(λt). (15)

Hyperparameters The multinomial likelihoods treat pixels within a super-pixel as independent random vari-
ables. However, the ddCRP prior models affinities between superpixels. This can cause the prior to get washed
away in favor of the likelihoods. To rectify this we introduce a hyperparameter γ that controls the relative
importance of the prior and the likelihood,

p(x, c | α,A, γ, λ) ∝ p(c | α,A) {p(x | c, λ)}γ . (16)

The Dirichlet hyperparmaeters λ = {λc, λt} along with γ are learned via a grid search on the training set.
Given a grid of possible hyperparameters we hill climb on the posterior probability surface by running a small
number of MCMC iterations. Finally, we select the set of hyperparameters that produce optimal results accord-
ing to a chosen loss function, Rand index in this case. For the Dirichlet hyper-parameters we searched over
a coarse grid located at locations: {0.01, 0.1, 1, 5, 10, 20, 25, 40, 50, 100}, for γ we searched over the range:
{0.001, 0.005, 0.05, 0.01, 0.1, 1, 10}.

A.3 Video Segmentation Details

We consider the problem of discovering segments from videos that are coherent in space, time and appearance.
The problem is a natural fit for the hierarchical ddCRP. We model video frames using independent spatial
ddCRPs and couple them using a temporal ddCRP. As with image segmentation, instead of working with pixels
we preprocess the video into a collection of superpixels.
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A.3.1 Prior

The hddCRP prior requires affinity functions to be specified between both data instances and clusters. We
experiment with both learned and manually specified affinity functions. In the learned case (learned-hddcrp),
we reuse the image segmentation affinity functions between data instances. Affinity between clusters t, s is
expressed as a linear weighted combination of covariates (θkts) encoding shape, size and positional affinities,

θkts = [ϑts, φts,
|ζt − ζs|

S
]T . (17)

The variable ζt denotes the size of cluster t and S = max|ζt − ζs|. The covariates collectively represented by
ϑts capture within frame affinities and are defined as follows:

ϑts = 1[t,s|t∈g,s∈g]

[rt − rs
R

,
yt − ys

Y

]T
. (18)

Across frame affinities are captured in φts,

φts = 1[t,s|t∈g+1,s∈g]

[ |rt − rs|
R

,
|yt − ys|

Y
, 1− t ∩ s

t ∪ s

]T
. (19)

Within a frame we capture similarity between cluster locations using signed Manhattan distances. Across frame
positional similarities are captured using standard Manhattan distances and through an intersection over union
measure of the projection of one cluster on another. Finally, the affinity between clusters t, s is modeled via a
sigmoidal transformation:

dts = wT
k θ

k
ts, A0

ts = (1 + exp(dts))
−1. (20)

A.3.2 Likelihood

As a preprocessing step, we divide each frame into approximately 1200 superpixels using the method proposed
by [18].4 Following the image segmentation likelihood model, we describe a superpixel using 120-bin HSV
color and 128-bin local texton histograms. The color and texture features for super-pixel i in video frame g
are denoted by xgi = {xc

gi, x
t
gi}, where xc

gi ∼ Mult(ϕc
zgi), ϕ

c
zgi ∼ Dir(λc), xt

gi ∼ Mult(ϕt
zgi), ϕ

t
zgi ∼

Dir(λt). The proposed likelihood model forces clusters across video frames belonging to the same video seg-
ment share a common appearance model, encoding the assumption that appearance of objets doesn’t change
significantly over the course of the video. More elaborate likelihoods could be developed to capture appearance
changes and is interesting future work. As with image segmentation, in addition to the Dirichlet hyperparame-
ters controlling the texture and color likelihoods we introduce an additional parameter controlling the relative
importance of the likelihood, p(x,k, c | α1:G, α0, A

1:G, A0, λ) ∝ p(c,k | α1:G, α0, A
1:G, A0) {p(x |

c,k, λ)}γ . All likelihood hyperparameters are learned through validation analogously to image segmentation.

A.3.3 Additional Results

Figure 4: Examples from VSB100 test set. For each video the first, middle and last frames are displayed. The
row immediately below the video displays the ground truth. The following two rows display segmentations
produced by learned and naive-hddCRP models.

4[18] also estimate temporal correspondences between superpixels, but we do not utilize this information.
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