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Abstract

We develop a method for discovering the parts of an articulated object from
aligned meshes of the object in various three-dimensional poses. We adapt the dis-
tance dependent Chinese restaurant process (ddCRP) to allow nonparametric dis-
covery of a potentially unbounded number of parts, while simultaneously guaran-
teeing a spatially connected segmentation. To allow analysis of datasets in which
object instances have varying 3D shapes, we model part variability across poses
via affine transformations. By placing a matrix normal-inverse-Wishart prior on
these affine transformations, we develop a ddCRP Gibbs sampler which tractably
marginalizes over transformation uncertainty. Analyzing a dataset of humans cap-
tured in dozens of poses, we infer parts which provide quantitatively better defor-
mation predictions than conventional clustering methods.

1 Introduction

Mesh segmentation methods decompose a three-dimensional (3D) mesh, or a collection of aligned
meshes, into their constituent parts. This well-studied problem has numerous applications in com-
putational graphics and vision, including texture mapping, skeleton extraction, morphing, and mesh
registration and simplification. We focus in particular on the problem of segmenting an articulated
object, given aligned 3D meshes capturing various object poses. The meshes we consider are com-
plete surfaces described by a set of triangular faces, and we seek a segmentation into spatially co-
herent parts whose spatial transformations capture object articulations. Applied to various poses of
human bodies as in Figure 1, our approach identifies regions of the mesh that deform together, and
thus provides information which could inform applications such as the design of protective clothing.

Mesh segmentation has been most widely studied as a static clustering problem, where a single
mesh is segmented into “semantic” parts using low-level geometric cues such as distance and cur-
vature [1, 2]. While supervised training data can sometimes lead to improved results [3], there are
many applications where such data is unavailable, and the proper way to partition a single mesh is
inherently ambiguous. By searching for parts which deform consistently across many meshes, we
create a better-posed problem whose solution is directly useful for modeling objects in motion.

Several issues must be addressed to effectively segment collections of articulated meshes. First, the
number of parts comprising an articulated object is unknown a priori, and must be inferred from
the observed deformations. Second, mesh faces exhibit strong spatial correlations, and the inferred
parts must be contiguous. This spatial connectivity is needed to discover parts which correspond
with physical object structure, and required by target applications such as skeleton extraction. Fi-
nally, our primary goal is to understand the structure of human bodies, and humans vary widely in
size and shape. People move and deform in different ways depending on age, fitness, body fat, etc.
A segmentation of the human body should take into account this range of variability in the popula-
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Figure 1: Human body segmentation. Left: Reference poses for two female bodies, and those bodies captured
in five other poses. Right: A manual segmentation used to align these meshes [6], and the segmentation inferred
by our ddCRP model from 56 poses. The ddCRP segmentation discovers parts whose motion is nearly rigid,
and includes small parts such as elbows and knees absent from the manual segmentation.

tion. To our knowledge, no previous methods for segmenting meshes combine information about
deformation from multiple bodies to address this corpus segmentation problem.

In this paper, we develop a statistical model which addresses all of these issues. We adapt the
distance dependent Chinese restaurant process (ddCRP) [4] to model spatial dependencies among
mesh triangles, and enforce spatial contiguity of the inferred parts [5]. Unlike most previous mesh
segmentation methods, our Bayesian nonparametric approach allows data-driven inference of an ap-
propriate number of parts, and uses a affine transformation-based likelihood to accommodate object
instances of varying shape. After developing our model in Section 2, Section 3 develops a Gibbs
sampler which efficiently marginalizes the latent affine transformations defining part deformation.
We conclude in Section 4 with results examining meshes of humans and other articulated objects,
where we introduce a metric for quantitative evaluation of deformation-based segmentations.

2 A Part-Based Model for Mesh Deformation

Consider a collection of J meshes, each with N triangles. For some input mesh j, we let yjn ∈ R
3

denote the 3D location of the center of triangular face n, and Yj = [yj1, . . . , yjN ] ∈ R
3×N the

full mesh configuration. Each mesh j has an associated N -triangle reference mesh, indexed by bj .

We let xbn ∈ R
4 denote the location of triangle n in reference mesh b, expressed in homogeneous

coordinates (xbn(4) = 1). A full reference mesh Xb = [xb1, . . . , xbN ]. In our later experiments, Yj

encodes the 3D mesh for a person in pose j, and Xbj is the reference pose for the same individual.

We estimate aligned correspondences between the triangular faces of the input pose meshes Yj , and
the reference meshes Xb, using a recently developed method [6]. This approach robustly handles
3D data capturing varying shapes and poses, and outputs meshes which have equal numbers of faces
in one-to-one alignment. Our segmentation model does not depend on the details of this alignment
method, and could be applied to data produced by other correspondence algorithms.

2.1 Nonparametric Spatial Priors for Mesh Partitions

The recently proposed distance dependent Chinese restaurant process (ddCRP) [4], a generalization
of the CRP underlying Dirichlet process mixture models [7], has a number of attractive properties
which make it particularly well suited for modeling segmentations of articulated objects. By placing
prior probability mass on partitions with arbitrary numbers of parts, it allows data-driven inference
of the true number of mostly-rigid parts underlying the observed data. In addition, by choosing an
appropriate distance function we can encourage spatially adjacent triangles to lie in the same part,
and guarantee that all inferred parts are spatially contiguous [5].

The Chinese restaurant process (CRP) is a distribution on all possible partitions of a set of objects (in
our case, mesh triangles). The generative process can be described via a restaurant with an infinite
number of tables (in our case, parts). Customers (triangles) i enter the restaurant in sequence and
select a table zi to join. They pick an occupied table with probability proportional to the number of
customers already sitting there, or a new table with probability proportional to a scaling parameter α.
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Figure 2: Left: A reference mesh in which links (yellow arrows) currently define three parts (connected
components). Right: Each part undergoes a distinct affine transformation, generated as in Equation (2).

The final seating arrangement gives a partition of the data, where each occupied table corresponds
to a part in the final segmentation.

Although described sequentially, the CRP induces an exchangeable distribution on partitions, for
which the segmentation probability is invariant to the order in which triangle allocations are sampled.
This is inappropriate for mesh data, in which nearby triangles are far more likely to lie in the same
part. The ddCRP alters the CRP by modeling customer links not to tables, but to other customers.
The link cm for customer m is sampled according to the distribution

p (cm = n | D, f, α) ∝
{

f(dmn) m 6= n,
α m = n.

(1)

Here, dmn is an externally specified distance between data points m and n, and α determines the
probability that a customer links to themselves rather than another customer. The monotonically
decreasing decay function f(d) mediates how the distance between two data points affects their
probability of connecting to each other. The overall link structure specifies a partition: two cus-
tomers are clustered together if and only if one can reach the other by traversing the link edges.

We define the distance between two triangles as the minimal number of hops, between adjacent
faces, required to reach one triangle from the other. A “window” decay function of width 1, f(d) =
1[d ≤ 1], then restricts triangles to link only to immediately adjacent faces. Note that this doesn’t
limit the size of parts, since all pairs of faces are potentially reachable via a sequence of adjacent
links. However, it does guarantee that only spatially contiguous parts have non-zero probability
under the prior. This constraint is preserved by our MCMC inference algorithm.

2.2 Modeling Part Deformation via Affine Transformations

Articulated object deformation is naturally described via the spatial transformations of its constituent
parts. We expect the triangular faces within a part to deform according to a coherent part-specific
transformation, up to independent face-specific noise. The near-rigid motions of interest are reason-
ably modeled as affine transformations, a family of co-linearity preserving linear transformations.
We concisely denote the transformation from a reference triangle to an observed triangle via a ma-
trix A ∈ R

3×4. The fourth column of A encodes translation of the corresponding reference triangle
via homogeneous coordinates xbn, and the other entries encode rotation, scaling, and shearing.

Previous approaches have treated such transformations as parameters to be estimated during infer-
ence [8, 9]. Here, we instead define a prior distribution over affine transformations. Our construction
allows transformations to be analytically marginalized when learning our part-based segmentation,
but retains the flexibility to later estimate transformations if desired. Explictly modeling transforma-
tion uncertainty makes our MCMC inference more robust and rapidly mixing [7], and also allows
data-driven determination of an appropriate number of parts.

The matrix of numbers encoding an affine transformation is naturally modeled via multivariate Gaus-
sian distributions. We place a conjugate, matrix normal-inverse-Wishart [10, 11] prior on the affine
transformation A and residual noise covariance matrix Σ:

Σ ∼ IW(n0, S0)

A | Σ ∼ MN (M,Σ,K) (2)
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Here, n0 ∈ R and S0 ∈ R
3×3 control the variance and mean of the Wishart prior on Σ−1. The

mean affine transformation is M ∈ R
3×4, and K ∈ R

4×4 and Σ determine the variance of the prior
on A. Applied to mesh data, these parameters have physical interpretations and can be estimated
from the data collection process. While such priors are common in Bayesian regression models, our
application to the modeling of geometric affine transformations appears novel.

Allocating a different affine transformation for the motion of each part in each pose (Figure 2), the
overall generative model can be summarized as follows:

1. For each triangle n, sample an associated link cn ∼ ddCRP (α, f,D). The part assignments
z are a deterministic function of the sampled links c = [c1, . . . , cN ].

2. For each pose j of each part k, sample an affine transformation Ajk and residual noise
covariance Σjk from the matrix normal-inverse-Wishart prior of Equation (2).

3. Given these pose-specific affine transformations and assignments of mesh faces to parts, in-
dependently sample the observed location of each pose triangle relative to its corresponding
reference triangle, yjn ∼ N (Ajznxbjn,Σjzn).

Note that Σjk governs the degree of non-rigid deformation of part k in pose j. It also indirectly
influences the number of inferred parts: a large S0 makes large Σjk more probable, which allows
more non-rigid deformation and permits models which utilize fewer parts. The overall model is

p(Y, c, A,Σ | X, b,D, α, f, η) = p(c | D, f, α)

J
∏

j=1

[

K(c)
∏

k=1

p(Ajk,Σjk | η)
] [

N
∏

n=1

N (yjn | Ajznxbjn,Σjzn)

]

(3)

where Y = {Y1, . . . , YJ}, X = {X1, . . . , XB}, b = [b1, . . . , bJ ], the ddCRP links c define assign-
ments z to K(c) parts, and η = {n0, S0,M,K} are likelihood hyperparameters. There is a single
reference mesh Xb for each object instance b, and Yj captures a single deformed pose of Xbj .

2.3 Previous Work

Previous work has also sought to segment a mesh into parts based on observed articulations [8, 12,
13, 14]. The two-stage procedure of Rosman et al. [13] first minimizes a variational functional
regularized to favor piecewise constant transformations, and then clusters the transformations into
parts. Several other segmentation procedures [12, 14] lack coherent probabilistic models, and thus
have difficulty quantifying uncertainty and determining appropriate segmentation resolutions.

Anguelov et al. [8] define a global probabilistic model, and use the EM algorithm to jointly estimate
parts and their transformations. They explicitly model spatial dependencies among mesh faces, but
their Markov random field cannot ensure that parts are spatially connected; a separate connected
components process is required. Heuristics are used to determine an appropriate number of parts.

Ambitious recent work has considered a model for joint mesh alignment and segmentation [9]. How-
ever, this approach suffers from many of the issues noted above: the number of parts must be speci-
fied a priori, parts may not be contiguous, and their EM inference appears prone to local optima.

3 Inference

We seek the constituent parts of an articulated model, given observed data (X, Y, and b). These parts
are characterized by the posterior distribution of the customer links c. We approximate this posterior
using a collapsed Gibbs sampler, which iteratively draws cn from the conditional distribution

p(cn | c−n,X,Y, b,D, f, α, η) ∝ p(cn |D, f, α)p(Y | z(c),X, b, η). (4)

Here, z(c) is the clustering into parts defined by the customer links c. The ddCRP prior is given by
Equation (1), while the likelihood term in the above equation further factorizes as

p(Y | z(c),X, b, η) =

K(c)
∏

k=1

J
∏

j=1

p(Yjk |Xbjk, η) (5)
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where Yjk ∈ R
3×Nk is the set of triangular faces in part k of pose j, and Xbjk are the corresponding

reference faces. Exploiting the conjugacy of the normal likelihood to the prior over affine transfor-
mations in Equation (2), we marginalize the part-specific latent variables Ajk and Σjk to compute
the marginal likelihood in closed form (see the supplement for a derivation):

p(Yjk |Xbjk, η) =
|K|3/2|S0|(n0/2)Γ3

(

Nk+n0
2

)

π(3Nk/2)|Sxx|(3/2)|S0+Sy|x|((Nk+n0)/2)Γ3(
n0
2 )

, (6)

Sxx = XbjkXbjk
T +K, Syx = YjkXbjk

T +MK, (7)

Sy|x = YjkYjk
T +MKMT − Syx(Sxx)

−1ST
yx. (8)

Instead of explicitly sampling from Equation (4), a more efficient sampler [4] can be derived by
observing that different realizations of the link cn only make a small change to the partition structure.
First, note that removing a link cn generates a partition z(c−n) which is either identical to the old
partition z(c) or contains one extra part, created by splitting some existing part. Sampling new

realizations of cn will give rise to new partitions z(c−n ∪ c
(new)
n ), which may either be identical to

z(c−n) or contain one less part, due to a merge of two existing parts. We thus sample cn from the
following distribution which only tracks those parts which change with different realizations of cn:

p(cn | c−n,X,Y, b,D, f, α, η) ∝
{

p(cn |D, f, α)∆(Y,X, b, z(c), η) if cn links k1 and k2;
p(cn |D,α) otherwise,

∆(Y,X, b, z(c), η) =

∏J

j=1 p(Yjk1∪k2 |Xbjk1∪k2 , η)
∏J

j=1 p(Yjk1 |Xbjk1 , η)
∏J

j=1 p(Yjk2 |Xbjk2 , η)
. (9)

Here, k1 and k2 are parts in z(c−n). Note that if the mesh segmentation c is the only quantity
of interest, the analytically marginalized affine transformations Ajk need not be directly estimated.
However, for some applications the transformations are of direct interest. Given a sampled segmen-
tation, the part-specific parameters for pose j have the following posterior [10]:

p(Ajk,Σjk |Y k
j , Xk, η) ∝ MN (Ajk |SyxS

−1
xx ,Σjk, Sxx)IW(Σjk |Nk + n0, Sy|x + S0) (10)

Marginalizing the noise covariance matrix, the distribution over transformations is then

p(Ajk |Y k
j , Xk, η) =

∫

MN (Ajk |SyxS
−1
xx ,Σjk, Sxx)IW (Σjk |Nk + n0, Sy|x + S0) dΣjk

= MT (Ajk |Nk + n0, SyxS
−1
xx , Sxx, Sy|x + S0) (11)

where MT (·) is a matrix-t distribution [11] with mean SyxS
−1
xx , and Nk + n0 degrees of freedom.

4 Experimental Results

We now experimentally validate, both qualitatively and quantitatively, our mesh-ddcrp model. Be-
cause “ground truth” parts are unavailable for the real body pose datasets of primary interest, we
propose an alternative evaluation metric based on the prediction of held-out object poses, and show
that the mesh-ddcrp performs favorably against competing approaches.

We primarily focus on a collection of 56 training meshes, acquired and aligned [6] from 3D scans
of two female subjects in 27 and 29 poses. For quantitative tests, we employ 12 meshes of each of
six different female subjects [15] (Figure 4). For each subject, a mesh in a canonical pose is chosen
as the reference mesh (Figure 1). These meshes contain about 20,000 faces.

4.1 Hyperparameter Specification and MCMC Learning

The hyperparameters that regularize our mesh-ddcrp prior have intuitive interpretations, and can be
specified based on properties of the mesh data under consideration. As described in Section 2.1,
the ddCRP distances D and f are set to guarantee spatially connected parts. The self-connection
parameter is set to a small value, α = 10−8, to encourage creation of larger parts.

The matrix normal-inverse-Wishart prior on affine transformations Ajk , and residual noise covari-
ances Σjk , has hyperparameters η = {n0, S0,M,K}. The mean affine transformation M is set to
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the identity transformation, because on average we expect mesh faces to undergo small deformations.
For the noise covariance prior, we set the degrees of freedom n0 = 5, a value which makes the prior
variance nearly as large as possible while ensuring that the mean remains finite. The expected part
variance S0 captures the degree of non-rigidity which we expect parts to demonstrate, as well as
noise from the mesh alignment process. The correspondence error in our human meshes is approxi-
mately 0.01m; allowing for some part non-rigidity, we set σ = 0.015m and S0 = σ2 × I3×3. K is
a precision matrix set to K = σ2×diag(1, 1, 1, 0.1).The Kronecker product of K−1 and S0 governs
the covariance of the distribution on A. Our settings make this nearly identity for most components,
but the translation components of A have variance which is an order of magnitude larger, so that the
expected scale of the translation parameters matches that of the mesh coordinates.

In our experiments, we ran the mesh-ddcrp sampler for 200 iterations from each of five random
initializations, and selected the most probable posterior sample. The computational cost of a Gibbs
iteration scales linearly with the number of meshes; our unoptimized Matlab implementation re-
quired around 10 hours to analyze 56 human meshes.

4.2 Baseline Segmentation Methods

We compare the mesh-ddcrp model to three competing methods. The first is a modified agglomer-
ative clustering technique [16] which enforces spatial contiguity of the faces within each part. At
initialization, each face is deemed to be its own part. Adjacent parts on the mesh are then merged
based on the squared error in describing their motion by affine transformations. Only adjacent parts
are considered in these merge steps, so that parts remain spatially connected.

Our second baseline is based on a publicly available implementation of spectral clustering meth-
ods [17], a popular approach which has been previously used for mesh segmentation [18]. We com-
pare to an affinity matrix specifically designed to cluster faces with similar motions [19]. The affinity

between two mesh faces u, v is defined as Cuv = exp{−σuv+
√
muv

S2 }, where muv = 1
J2

∑

j δuvj ,

δuvj is the Euclidean distance between u and v in pose j, σuv =
√

1
J

∑

j(δuvj − δ̄uv)2 is the

corresponding standard deviation, and S = 1
M

∑

u,v σuv +
√
muv for all M pairs of faces u, v.

For the agglomerative and spectral clustering approaches, the number of parts must be externally
specified; we experimented with K = 5, 10, 15, 20, 25, 30 parts. We also consider a Bayesian
nonparametric baseline which replaces the ddCRP prior over mesh partitions with a standard CRP
prior. The resulting mesh-crp model may estimate the number of parts, but doesn’t model mesh
structure or enforce part contiguity. The expected number of parts under the CRP prior is roughly
α logN ; we set α = 2 so that the expected number of mesh-crp parts is similar to the number of
parts discovered by the mesh-ddcrp. To exploit bilateral symmetry, for all methods we only segment
the right half of each mesh. The resulting segmentation is then reflected onto the left half.

4.3 Part Discovery and Motion Prediction

We first consider the synthetic Tosca dataset [20], and separately analyze the Centaur (six poses)
and Horse (eight poses) meshes. These meshes contain about 31,000 and 38,000 triangular faces,
respectively. Figure 3 displays the segmentations of the Tosca meshes inferred by mesh-ddcrp. The
inferred parts largely correspond to groups of mesh faces which undergo similar transformations.

Figure 4 displays the results produced by the ddCRP, as well as our baseline methods, on the human
mesh data. Qualitatively, the segmentations produced by mesh-ddcrp correspond to our intuitions
about the body. Note that in addition to capturing the head and limbs, the segmentation successfully
segregates distinctly moving small regions such as knees, elbows, shoulders, biceps, and triceps. In
all, the mesh-ddcrp detects 20 distinctly moving parts for one half of the body.

We now introduce a quantitative measure of segmentation quality: segmentations are evaluated by
their ability to explain the articulations of test meshes with novel shapes and poses. Given a collec-
tion of T test meshes Yt with corresponding reference meshes Xbt , and a candidate segmentation
into K parts, we compute

E =
1

T

T
∑

t=1

K
∑

k=1

||Ytk −A∗
tkXbtk||2. (12)
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Figure 3: Segmentations produced by mesh-ddcrp on synthetic Tosca meshes [20]. The first mesh in each row
displays the chosen reference mesh. For illustration, we have only segmented the right half of each mesh.

Here, A∗
tk is the least squares estimate of the single affine transformation responsible for mapping

Xbtk to Ytk. Note that Equation (12) is trivially zero for a degenerate solution wherein each mesh
face is assigned to its own part. However, segmentations of similar resolution may safely be com-
pared using Equation (12), with lower errors corresponding to better segmentations.

On our test set of human meshes, the mesh-ddcrp model produces an error of E = 1.39meters, which
corresponds to sub-millimeter accuracy when normalized by the number of faces. Figure 4 displays
a plot comparing the errors achieved by the different methods. Mesh-ddcrp is significantly better
than all other methods, including for settings of K which allocate 50% more parts to competing
approaches, according to a Wilcoxon’s signed rank test (5% significance level).

Next, we demonstrate the benefits of sharing information among differently shaped bodies. We
selected an illustrative articulated pose for each of the two training subjects in addition to their
respective reference poses (Figure 4). The chosen poses either exhibit upper or lower body defor-
mations, but not both. The meshes were then segmented both independently for the two subjects
and jointly sharing information across subjects. Figure 5 demonstrates that the independent segmen-
tations exhibit both undersegmented (legs in the first set) and oversegmented (head in the second)
parts. However, sharing information among subjects results in parts which correspond well with
physical human bodies. Note that with only two articulated poses, we are able to generate mean-
ingful segmentations in about an hour of computation. This data-limited scenario also demonstrates
the benefits of the ddCRP prior: as shown in Figure 5, the parts extracted by mesh-crp are “patchy”,
spatially disconnected, and physically implausible.

5 Discussion

Adapting the ddCRP to collections of 3D meshes, we have developed an effective approach for
the discovery an unknown number of parts underlying articulated object motion. Unlike previous
methods, our model guarantees that parts are spatially connected, and uses transformations to model
instances with potentially varying body shapes. Via a novel application of matrix normal-inverse-
Wishart priors, our sampler analytically marginalizes transformations for improved efficiency. While
we have modeled part motion via affine transformations, future work should explore more accurate
Lie algebra characterizations of deformation manifolds [21].

Experiments with dozens of real human body poses provide strong quantitative evidence that our ap-
proach produces state-of-the-art segmentations with many potential applications. We are currently
exploring methods for using multiple samples from the ddCRP posterior to characterize part uncer-
tainty, and scaling our Monte Carlo learning algorithms to datasets containing thousands of meshes.
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Figure 4: Top two rows (left to right): Segmentations produced by spectral and agglomerative clustering with
15, 20, and 25 clusters respectively, followed by the mesh-crp and mesh-ddcrp segmentations. Bottom row: Test
set results. We display mesh-ddcrp segmentations for several test meshes, and quantitatively compare methods.
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Figure 5: Impact of sharing information across bodies with varying shapes. The two rows correspond to the
training subjects. Each row displays the reference pose, an illustrative articulated pose, mesh-crp and mesh-
ddcrp segmentations produced by independently segmenting the pair of poses of each individual, and mesh-crp
and mesh-ddcrp segmentations produced by jointly segmenting the chosen poses from both subjects.
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