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Segmentation of Natural Images Inference: Variational Stochastic Search Validation of Learned Image Partition Prior
Goals: To develop robust, practical learning and inference algorithms for Maximization-Expectation: Marginalize parameters, maximize discrete partition. | Baseline: Heuristically specified GP covariances from Sudderth & Jordan, NIPS 2008
Bayesian nonparametric models of natural image partitions, which reliably vary (| %.1) x p(x | 2. p)p(z | o, A, 1) * Sampled partitions for various models: Learning: Distance, Learning: Distance,
segment resolution and model the uncertainty inherent in segmentation tasks. P 11 P » P)P A Image Heuristic _ Learning: Distance  pp edge cues  Pb edges, appearance
Contributions Integrate likelihood parameters analytically Marginalize layer support functions via expectation

(Dirichlet prior conjugate to multinomial) propagation (EP): approximate but very accurate

e [earning: Extending prior work on spatially dependent Pitman-Yor processes _ . o
e Unlike conventional variational methods, no upper bound on the number of layers.

(Sudderth & Jordan, NIPS 2008), we propose an efficient low-rank covariance

representation and calibrate it via a database of human segmentations. e EP more accurately models uncertainty, allowing selection of segmentation resolution.
e Inference: Substantially improving on conventional mean field methods, we Search for a Collection of Probable Partitions Generative model Conditional models

develop a higher-order variational approximation based on expectation * Space of partitions is explored through local (shift) and global (split, merge, swap) moves. |« For test images, learned models nearly always assign 2 - ;#/ 5 -ono

propagation, and robustly optimize it via stochastic search. Image Original Partition Merge Split Swap Shift higher probabilities to human segmentations £ o] o 2 g F e

. . . . . . .. ere . . . 3 . ? 93..’ 5_6600' . ¥, o®eo
e Results: Multiple, high-quality segmentations of challenging natural images. --- * Partition probability has good positive correlation  E-wo 7 § L ol .
- - - with segment quality measures like the Rand index G- o7 | [
Modeling Image Partitions of Unknown Size | , I AR e
Log-likelihood under PYall ' . Rand Index .

 Partitions of variable resolution are generated by depth-ordered, occluding layers.

+ Layer support is modeled by a smooth continuous function, as in level set methods.| Results: segmentatlon of Natural Images

Non-Markov Gaussian Processes: Spatial Dependence e Robust to initialization and finds better partitions than conventional local optimization. * BSDS300: Berkeley Segmentation Dataset, 100 test images, 200 training images
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e [abelME: 30 test images from each of Oliva & Torralba’s eight natural scene categories
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e Most probable partitions for several test images:
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oy Semenassmens: e e - Learning: Berkeley Segmentation Dataset
Z > % . _ - . . _ oy e . . .
; zn = min{k | up, < &' (wy)} - ¢ e Appearance hyperparameters: Maximize training partition marginal likelihood
ﬂ/v@ Feat“resé CO'Or&TeXt“reC e Layer size hyperparameters: From Chinese restaurant process form of Pitman-Yor prior BSDS300 [ .abelMe
|@* S Ty, ~ Mult(¢Z, ) e Covariance kernel Y = AAT 4+ U islearned by 1 Ncuts | MS FH gPb | PYheur | PYdist | PYall oPb | PYall
t t f , f
x: ~ Mult(6 . e . . =
2 " ( Z”) 1. Binary classification: What is the probability that 5 0.8/ PCRI 828 8471; 8;2 822 82(5) 823 8;61 gzj 8;2
each pair of superpixels lies in the same segment? 20-6" Seetover : : i : : : : : :
: : P : © 0.4} Ncuts — Normalized Cuts, Shi & Malik ,PAMIO0. MS — Mean Shift, Comaniciu & Meer, PAMIO2.
Learn via regUIarlzed IOgISUC regression model. 2 FH — Graph-Based Segmentation, Felzenszwalb & Huttenlocher, IJCV04. gPb — Ultrametric contours from generalized Pb, Arbelaez et al. CVPRO9.
2. Co-occurrence to covariance: There is an injective 5 9% _ . .
mapping between GP correlation and the probability ) oE 5 0 .| Multiple segmentations from posterior search, most probable on left:
that two superpixels are in the same segment. correlation coefficient

3. Guaranteeing a valid, compact model: The pseudo-
covariance constructed by considering each
superpixel pair independently may not be positive
definite. We use a projected gradient method to
find the closest low-dimensional, valid covariance
matrix.

Lowering dimension trades accuracy for speed.

More Likely Front Layer Middle Layer Less Likely Front Layer Middle Layer
e Bias towards simply shaped regions can recover some occlusion relationships:
hypotheses above assume blue in front, green in middle, red in background




