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Human Segmentations



Model Desiderata

Automatic model selection - adapt to variability in
image/video/object complexity

Manage uncertainty - retain a distribution over
possible explanations

Model spatial and temporal correlations

Learn from human explanations



Adapting to complexity:
Distributions over partitions




Spatially Coupled PY Processes

Model Long Range Spatial Correlations

Power Law
Segment Sizes

&) ) Ghosh & Sudderth, CVPR 2012
Sudderth & Jordan, NIPS 2008

Expected Layer
Appearance



Generative Samples

Samples from a Potts Markov Random Field (MRF) model:
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Talk Outline

 Distance dependent partitions
e Parts from articulated 3D objects
 Hierarchical distance dependent partitions
» Activity discovery from MoCap data
* Learning distance dependent models

* |mage and video segmentation



A distribution over partitions: Chinese
Restaurant Process
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Distance dependent Chinese Restaurant
Process (ddCRP)
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Models for heterogeneous data

Captures dependencies
A




Models for heterogeneous data
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Models for heterogeneous data

Captures dependencies
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Talk Outline

* Distance dependent partitions
e Parts from articulated 3D objects

* Hierarchical distance dependent partitions
» Activity discovery from MoCap data

* |earning distance dependent models

* Image and video segmentation



Parts from Deformations
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Discovering Parts from Deformations:
Big Picture

* Cluster: Mesh faces.

* Prior: over the space of plausible
mesh partitions.

- Likelihood: Given segmentation into
parts, model how multiple bodies
deform across many poses.

* Posterior: Explored through MCMC.




ddCRP Prior over Mesh Partitions

m="n|A a)x

 Mesh faces are only allowed to link to neighboring faces



Prior over plausible partitions

Noise

Split limbs

T

p(Zl) > () p(Zz) =0 p3) ’ 0

Avoid: Disconnected

Desirable Avoid: Noisy Parts
Parts



Modeling Part Deformations

Matrix Normal Inverse Wishart:

DI~ IW(TLQ, SO
A|S ~ MN(M, 2, K)
where A € R3*4js an affine transformatlon

~ MNIW(.




Generative Affine Likelihoods

X=X, Y

Yin N(Alheadxblm Z‘lheaud)

—Wh

Latent

Y. governs the non-rigidity
7%of part k in pose j.

A separate affine transform is
defined for each part and pose
in the candidate segmentation

Observed

/N

Yom ™ N(A2legxb2ma Z21eg)

Local Regression Model




Marginal Affine Likelihoods

For each part and pose combination analytically
marginalize over all possible affine transtormations

p(Yir | Xjr) =

P(Yijk, Ajk, Yk | Xjk)dAjk, dXjk
Marginal Likelihood

Bayesian Model Selection:

* Improper merges have low marginal likelihoods

* |Improper splits are "suspicious coincidences” and
end up with lower marginal likelihoods



Human Bodies in Motion

e 56 Aligned scans from two human subjects

* Wide variability in poses, limited variability in body shapes

Subject 1 Subject 2

Ghosh et al, NIPS 2012



Visual Comparisons

AR

Agglomerative Spectral Clustering CRP ddCRP
Liu & Zhang, 2004

Ghosh et al., NIPS 2012



Quantitative Evaluation
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12 Test meshes from SiX subJects

Measure error in predicted motion for the
candidate segmentations Ghosh et al., NIPS 2012



Large Scale Studies

1732 meshes, 78 subjects, ~22,000 mesh faces
Wide variability in both body shapes and poses.



Segmented Bodies




Computer generated meshes




Inference through Gibbs Sampling

cC
C1
N Customers = Mesh Faces
Tables = Object Parts
C2

V

Collapsed Sampler:
Only need to sample links, Z(C)

other random variables are
@ @ Table structure
‘ ‘ Segmentation

analytically marginalized out.
Local changes in the link structure lead to
large changes in the partition structure



Talk Outline

* Distance dependent partitions
e Parts from articulated 3D objects

* Hierarchical distance dependent partitions
» Activity discovery from MoCap data

* |earning distance dependent models

* Image and video segmentation



Hierarchical Distance Dependent
Partitions

I
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Doctors have been confounded by the
divergent paths of Ebola patients whose
cases appeared similar at first. They
have been especially baffled by the
“light bulb” phenomenon ... genes %7

I

I

Doctors have been confounded by the
divergent paths of Ebola patients whose
cases appeared similar at first. They
have been especially baffled by the
“light bulb” phenomenon ... genes %77

Model affinities between both data points and latent clusters.

Ghosh et al., UAI 2014



Hierarchical ddCRP




Hierarchical ddCRP

Group 1 Group 2




Hierarchical ddCRP

Group 1 Group 2

Dy, ~ H()\),Vm c Ay

T; ~ Qm, Vi €M

Components shared across groups



Activity Recognition

D: KneeRaise || E: ArmCircle F: Twist

A: JumpJack

y!

IG: SideReach| H: Box

_ 120
timesteps

Fox et al., AOAS, 2014
mocap.cs.cmu.edu




Hierarchical Auto Regressive Mixtures

Seqguence specific

links
A
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Sanie

Components shared across seqguences



Discovered Activities

Hamming Distance
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Inference
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sSummary

Articulated object segmentation
through ddCRP mixtures

4

o Activity discovery via hierarchical
’ \ distance dependent models

\A
N
~
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Talk Outline

* Distance dependent partitions
e Parts from articulated 3D objects

* Hierarchical distance dependent partitions
» Activity discovery from MoCap data

* [earning distance dependent models

* |mage and video segmentation



Feature Augmented Models
( J | X Ajj
Té)c

A)
= f(w
eatures encoding
similarity

Latent variables
governing contribution

of features




Learning From Partitions

 Moderate sized
databases of partitions
available for image and
video collections.

 Uncertainty in labeled
partitions

e Partitions are observed,
but /inks are not.

TA
Yy = NVeX1=11124,...3.3]

Y ={yi...yp}



Approximate Bayesian Computation

* Noisy partitions - human interpretations vary

* Appropriate noise model”? Unclear, ABC
Instead

e | kelihood free inference:

 Match “interesting” model statistic with observed
data statistic

Marin et al., Stat Comput, 2012



Auxiliary Training Model

pe,we,Y) o< p(we) | | plea | we)1(2(ca), ya)

(1 if AYa, yp) < €,

1 as = 9 .
(Yas o) \O otherwise.

Probability restricted to partitions close to training data.

Marin et al., Stat Comput, 2012



Loss Aware Modqel

* Notion of closeness captured through a task specific
loss function:

A(Yasyp) = 1 — RI(Ya, Yb)

 Marginalize over the exponentially large space of
latent links using MCMC

e Efficient ABC variant for sampling from the auxiliary
training model



Talk Outline

* Distance dependent partitions
e Parts from articulated 3D objects

* Hierarchical distance dependent partitions
» Activity discovery from MoCap data

* Learning distance dependent models

* Image and video segmentation



Image Segmentation

Learned Affinities
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Generative features: Conditional features:
(97;3' — {I’OWi — IOWj, 197;3' = {I‘OWf,; — I'oOwj,

col; — col, } col; — coly,edge;; }



Image Representation

—{ - -----b Eﬁ..--,sla-,m...

~1000 super—plxels
PRSEOSE S

xge:cture Mlﬂt (¢textu'r‘e)

Each super-pixel is described through
histograms (~ 120 bin) of color and texture



Eight Natural Scene Category Dataset
(LabelMe)
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400 train and 800 test images

Oliva and Torralba, 2001



Samples from learned models

Conditional Generative

Mountain

Street




Monte Carlo Statistics
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Statistics from 10,000 partitions sampled from generative affinities



Qualitative Results
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Quantitative results

LabelMe
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Learning in hierarchical models

e Auxiliary model for training now needs to account for

links between clusters
D

p(c,k,w,Y) o< p(w) | | plea | we)p(ka | ca,wi)1(2(ca, ka), ya)

w = {We, W }

VSB 100 - 40 training videos



Video Segmentation

Features between superpixels:

Hz'j = {I()Wi — IOW3,
col; — col;,

edge, j}

Features encoding similarity
between segments:

efs — {w(Sizet&
shapeys,

locationsys) }

Learned Affinities
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First Frame |_ast Frame




|_ast Frame

First Frame
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|_earning benetits hddCRP

learned hddCRP

learned hddCRP

fixed hddCRP fixed hddCRP
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Volumetric Rand Index Volumetric Precision Recall



Summary

hddCRP and ddCRP affinities can be
effectively learned from labeled partitions



Thank You




Questions?



Statistics of Human Segments

* Human segment sizes
follow power law
behavior.
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Spatial Coupling through Layers

Smooth Layers Thresholded layer support
Uy ~~ GP(O, K)

wy ~ Beta(l — ag, ap 4+ a,)
~1
61 = ¢ (wl)

Ul < 0 i
- \

Ug GP(O,K)
i | »

Image Partition

Occlude

Zp = min{k | ug, < 0k}

Sudderth & Jordan, 2008
Ghosh & Sudderth, 2012



Video Segmentation

* Features between superpixels — same as image
segmentation.

* Features between segments — Shapes, sizes and
positions.
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MoCap Likelihoods

Zzgi o, So ~/ IW(RQ, So),
B.,|MZY., L~MNMZE,, L).
Ezgi ™ N(O’ Zzgi)7




Moderate robustness to alignment errors




Inferred Segmentation

-

Segmentation with 20 Parts
Ghosh et al, NIPS 2012



Axial Symmetry

v P(Yieqi® UYL | Xpei' U X0i)

right ~1
head head head head
p(YEe;? ‘ Xlei‘% )p(YfringLLt ‘ XriZC;Lt)
hest head hest hest
o P UYRGH: | Xigr U X0 ) 1
h h h h
p(YVEF™ | XEZre )Ip(Yaes | Xiight )

Only merge similarly moving parts
across axis of symmetry




Measure of Rigidity



Inference

Algorithm 1: Hierarchical ddCRP sampler

For data instance i € {1... N} jointly propose data and affected cluster links
{c*.k*} «— ProposeLinks(x.k, ¢, a1.¢. AYC . A%(c)).

Evaluate the proposal according to the Metropolis Hastings acceptance probability
a({c*, k*},{c,k}). If the proposal is accepted, {c*,k*} becomes the next state. If the
proposal is rejected, the original configuration is retained.

For clusters t € T'(c) resample cluster links via a Gibbs update:

ke ~ p(ky | k_s, e, x, . A%(c)).
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Stick Breaking to Layers

0 1
A >y
Y | . J
T = V] 7o = p(1 — v1) gt e

w3 = v3(1 —v2)(1 — v1)

vk=P(2i=k|zi;ék—1,...,1)

Sequential Binary Sampler:
- For each data instance i, go through the bins in order 1

bki ~ Bernoulli(vk) through infinity.
) - Toss a biased coin (with the probability of heads = v_k)
zZ; = mln{k I bk?ﬁ = 1} for each bin .

- Pick the bin if the coin turns up heads



MCMC Learning

 Marginalize over the exponentially large space of latent links
- MCMC samples

e Explore the marginal posterior of the auxiliary training model:

plwe | Y) = Zp we,c | V)& > pw, )| v)

c(S/)

ws,c® ~ p(we,c|Y)

Random walk Proposal: w5t ~ N (with | w?, scale x I)

Gibbs Step:  cai | ¢—ai,wz, Y ~ plcq; | wz)o(2(ca), ya)



Bayesian Nonparametric Priors




Pitman-Yor Process

Power Law Behavior

l -«
E = ¢
] (14 ap+ (k—1)ag)
k—1
T — Wgk H(l — wl) 10° 10",
=1

10-2;

wy ~ Beta(ag, bk)

E[n

(]L,C — :l. - ‘:]fCl 10"}
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K
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Number of unique clusters in N observations: () (a b N %a )

1
Expected size of sorted component k: O( g )



Hierarchical ddCRP

Sample local links:

g ij '
p(cgi = g7 | ag, AY) x {ag i = 7.

Sample g|ob§a|gﬂnks

AY (c) t#s,
/ 7 - 3 / O tS )
plke = s | o, A”(c)) ox { o [ = s.

A() — Z(k)
Sample data generating
parameters:

dm ~ H(N\),¥m € Ag

T; ~ Om, VT E M

Group Specific
Partitions

Components shared across groups



Pitman-Yor Process

The Pitman-Yor process defines a distribution on infinite discrete measures, or
partitions

k—1
T = Wk H(l — wl) Wi ~ Beta(l — Qg, Op + k‘o:a)
=1

Stick Breaking Construction:
0 (105 1 —w 1

o Sethuraman, 1994
Ishwaran and James,

2001



Video Segmentation
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Approximate Bayesian Computation

Algorithm 3 Likelihood-free MCMC sampler

Use Algorithm 2 to get a realisation 0,2 from the
ABC target distribution 7. (@, z|y)
forr=1to N do
Generate 8’ from the Markov kernel ¢(-|@
Generate z’ from the likelihood £(-|0"),

Generate u from Uj 17,
7(0)g@" 1|0
ﬂ(o(’_l))q(O'IO“_”)

set (0',2") = (0',7)
else

(0(1) z(f)) — (0(1‘—1) Z(f—l))
end if

end for

('I—I‘))

if u < and p{n(z’),n(y)} < ¢ then




